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Important Notice

Please scan the QR code to join
the UTM GDSC discord where you
can keep up to date with all
our activities

Also you should follow the
Instagram @gdscutm

Women In Tech Conference coming
up March 23rd and 24th, almost
sold out, go to @witgdsc for
more details
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Citations

e https://pages.cs.wisc.edu/~kandasamy/courses/23spring-c
s/60/slides/lecture?26-lanamodels.pdf

e https://docs.google.com/presentation/d/T1FpNBGb70w2p5kry
cfPaIHHg9Y8S1GV5Eb2ESATIWKWHA /edit#slide=id.p

e https://erdem.pl/2021/05/understanding-positional-encod

ing-in-transformers

https://nlp.seas.harvard.edu/2018/04/03/attention.html

https://jalammar.github.io/illustrated-transformer/

https://www.voutube.com/watch?v=zjkBMEhN]_g

https://aws.amazon.com/what-is/foundation-models/
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Foundation Models

e Foundation models are a form of
generative artificial
intelligence

e They generate output from one or
more human language inputs
(prompts)

e Models are based on complex
neural networks including
generative adversarial networks
(GANs), transformers, and
variational encoders
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What really is a Large Language
Model...?

e Large language models are a type of foundation model

e Large language models are parameterized as a
transformer, a type of deep neural network

e Generally, decoder-only (eg. GPT), and can be
encoder-decoder

e Large language models are pre-trained via
self-supervision (next-token prediction)

e Ok now you know essentially a lot of words but what
does this really look 1like
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What really is a Large Language

Model...?
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< llama-2-70b
.C
parameters run.c
| |
140GB ~500 lines
of C code
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Compressing the Internet
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Chunk of the internet, 6,000 GPUs for 12 days, ~$2M
~10TB of text ~1e24 FLOPS

*numbers for Llama 2 70B
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Neural Network

Predicts the next word in the sequence.
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e.g. context of 4 words
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Language Modeling

e Goal: Model the probability distribution p(x), for any
sentence x

e Mathematically, we can break it down into
next-token-prediction;

P(x) = p(X, Xiq0 = X;)

= p(x, | X4, ..., X;) p(X,;-, X;) [apply chain rule of
probability]

= p(x, | Xeqo oo X)) POXy | X ooy X)) oo p(xy)

[recursively]
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Transformer
Architecture



High Level Overview

INPUT OUTPUT

THE
TRANSFORMER

[Je Suis étudiant]—> —>[I am a student]

s T

4
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High Level Overview

OUTPUT [] am a student
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High Level Overview
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High Level Overview

ENCODER )

t

Self-Attention

' Feed Forward Neural Network

|- -

€ > Google Developer Student Clubs



High Level Overview
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Input
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Input with Encoder
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Multi-Encoder
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Self-Attention
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Demo

e https://colab.research.google.com/github/tensorflow/
tensor2tensor/blob/master/tensor2tensor/notebooks/he
1lo_t2t.ipynb#scrollTo=0JKU36QAfgOC
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https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb#scrollTo=OJKU36QAfqOC
https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb#scrollTo=OJKU36QAfqOC
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Self-Attention Step 1

Input Thinking
Embedding XL T T T
Queries q1 EDj
Keys [0
Values V‘;Djj
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Self-Attention Step 2

Input

Embedding
Queries
Keys
Values

Score
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Self-Attention Step 3

Input Thinking Machines

Embedding X1 |:|:|:|:| X2 |:|:|:|:|
Queries q1 l:lj:] q2 I:‘j:‘
Keys ki [T k2 [T
Values Vi El:lj V2 Djj

Score qi e ki= qi e ko =

Divide by 8 ( vdyx )

Softmax
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Self-Attention Step 4
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Multi-Head Self-Attention

X

ATTENTION HEAD #0 ATTENTION HEAD #1

Qo Q4
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Multi-Head Self-Attention

X
Thinking
Machines
Calculating attention separately in
eight different attention heads
\ 4
ATTENTION ATTENTION ATTENTION
HEAD #0 HEAD #1 HEAD #7
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Multi-Head Self-Attention Unification

1) Concatenate all the attention heads 2) Multiply with a weight
matrix that was trained
jointly with the model

X

3) The result would be the ~ matrix that captures information
from all the attention heads. We can send this forward to the FFNN
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Multi-Head Self-Attention Unification Summary

1) This is our 2) We embed 3) Split into 8 heads.
input sentence* each word* We multiply X or
with weight matrices

WoQ
Mach :35‘! WOV

* In all encoders other than #0, I J

we don't need embedding. W,V
We start directly with the output

of the encoder right below this one

W-Q
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4) Calculate attention
using the resulting

Q/K/V matrices

Qo(_

k‘\/o

\Z

5) Concatenate the resulting ~ matrices,
then multiply with weight matrix to
produce the output of the layer




Positional Encoding
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Positional Encoding Example

POSITIONAL . 1 0.84 [OLIEE 0.54 1 (oA 0.0002 | -0.42 1
ENCODING

- - -

EMBEDDINGS X1 X2 X3

INPUT Je Suis étudiant
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Positional Encoding Multi-Function Approach

0 o
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How Positional Encoding actually looks like
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Residuals

ENCODER #1
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ENCODING
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Thinking Machines
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Encoder Deep Dive
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Encoder-Decoder Connection
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Decoder

Decoding time step:@Z 3456
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Self-Attention Vectors

Decoding time step: 1@3 456

OUTPUT

)
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Final Layer and Softmax

Which word in our vocabulary atin
is associated with this index?
Get the index of the cell

with the highest value
(argmax)

log_probs R

012345 ’ .. vocab_size
( Softmax )

logits |
12345 * .. vocab_size

( Linear )

Decoder stack output
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Training

Output Vocabulary

WORD a am thanks student <eos>
INDEX 0 1 3 4 5
Output Vocabulary
WORD a am thanks student <eos>
INDEX 0 1 3 4 5
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One-hot encoding of the word “am”




Loss Function

Target Model Outputs Trained Model Outputs

Output Vocabulary: a am I thanks student <eos> Output Vocabulary: a am I thanks student <eos>

position #1 K¢ 0.0 1.0 0.0 0.0 0.0 position #1

position #2 K¢ (M0l 0.0 00 0.0 0.0 . position #2

position #3 | 1.0 0.0 0.0 0.0 0.0 0.0 position #3 | 0.99 KeNelokEoNelokREoNe[okINeNelcrANeNelo)

LHELLEXS 00 00 00 0.0 0.0 : CEREUEZY 0.001 0.002 0.001

position #5 0K 0.0 0.0 0.0 0.0 1.0 Iyl 0.01 0.01 0.001 0.001 0.001 pMeESk:]
a am I thanks student <eos> a am I thanks student <eos>
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Finetuning



What is Finetuning?

every
~year

every
~week

Stage 1: Pretraining

1. Download ~10TB of text.

2. Get a cluster of ~6,000 GPUs.

3. Compress the text into a neural network, pay
~$2M, wait ~12 days.

4. Obtain base model.

Stage 2: Finetuning

1. Write labeling instructions

2. Hire people (or use scale.ai!), collect 100K high

quality ideal Q&A responses, and/or comparisons.
3. Finetune base model on this data, wait ~1 day.

4. Obtain assistant model.

5. Run a lot of evaluations.

6. Deploy.

7. Monitor, collect misbehaviors, go to step 1.
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Example

written by
people:

<USER>

Can you write a short introduction about the relevance of the
term "monopsony” in economics? Please use examples related
to potential monopsonies in the labour market and cite relevant
research.

<ASSISTANT>

"Monopsony” refers to a market structure where there is only
one buyer for a particular good or service. In economics, this

S — term is particularly relevant in the labor market, where a
monopsony employer has significant power over the wages and
working conditions of their employees. The presence of a
monopsony can result in lower wages and reduced employment
opportunities for workers, as the employer has little incentive to
increase wages or provide better working conditions...

~100K conversations
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Results

<USER>

Can you help me with this code? It seems like there is a bug.
print(*hello world)

<ASSISTANT>

It looks like you forgot to close the string passed to the function
print. You have to add a closing quote to properly terminate the
string. Here is the corrected function:

print(“hello world™)

Let me know if | can help with anything else!
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Comparison Labeling

It is often much easier to compare Answers instead of writing Answers.

Simple example: it’s much easier to spot a good haiku than it is to generate one:

¢

YOou

Write a haiku about paperclips

Steel curves intertwine,
Holding life's pages in line,
Quiet, small design.

Write a haiku about paperclips

Silver arcs entwined,
Holding life's pages, aligned,
In steel we find, bind.

Write a haiku about paperclips

MGPT
Silver arcs entwined,
Humble joiner of pages,
Quiet strength, aligned.
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Scaling Laws




What are Scaling Laws?

Performance of LLMs is a smooth, well-behaved, predictable function of:
- N, the number of parameters in the network

- D, the amount of text we train on

And the trends do not show signs of “topping out”

=> We can expect more intelligence “for free” by scaling

IsoFLOPs slices
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Example change in capabilities

gpt-4 W

gpt-4 (no vision)
gpt35 W
% %%
; ;‘g

Exam results (ordered by GPT-3.5 performance)

Estimated percentile lower bound (among test takers)
2%
23
%
L]

100% ~
80%
60%
40%
20%
0%

r 3
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Conclusion



We don’t know what goes on
inside LLMs (yet)

e Simply, there's too many neurons to probe and deconstruct

output  model recurrent called attention former

30 model model called attention former

model called =
called i
the aG
model the so
15 method method that which so
12 method - that that which so
9 and and that for which result
6 a to and
3 o X to o and same _ 1
input
new simple network  architecture ! the Trans former
Input token
Probability - TTTT———
0 0.2 0.4 0.6 0.8 1
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LLMs may or may not be better than humans

e Prior work in AI (eg. AlphaZero from Deepmind trained with
RL) have outperformed humans, but does that imply LLMs will
follow this path?

e LLMs aren't humans they don’'t learn like humans

e Eg. LLMs are very good at predicting the next token, which
humans for the most part aren't
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