BACKEND DEVELOPMENT WITH
@ RESTFUL APIS & EXPRESS.JS

‘ Workshop 2
o

@ REST APIS AND REQUESTS

WHAT IS BACKEND PROGRAMMING

Backend Development 1s also known as server-side
development

It 1s everything that the users don't see and contains
behind-the-scenes activities that occur when performing
any action on a website

Focuses primarily on databases, backend logic, APIs, and
Servers

FRONTEND

—_——"

ARCHITECTURE

Client Tier Business Logic Tier Database Tier
HTML/CSS3
JavaScript HTTP Request " NodeJS Request Data .
MySQL
Chrome
Browser | [F€3CWS ExpressJS
% HTML Page MySQL Data
Desktop Application Server Database Server

HTTP REQUESTS

Are requests by which you communicate with the
server (some computer listening for requests) on
some port

The requests hit the endpoints that perform
functions of:

Get

store Access to Petstore orders

/store/inventory Returns petinventories by status

Post

/store/order Place an order for a pet
Patch

/store/order/{orderId} Find purchase order by ID
Put

/store/order/{orderId} Delete purchase order by ID

Delete

HTTP METHODS

HTTP/1.1 Methods

GET The GET method is used to simply request a resource from a web server. Parameters within this method
are passed over the URL.

POST This method is used to send data to a web server via the body of the HTTP request.

HEAD This method is like the GET method but outputs only the HTTP response headers in the response returned
by the server and not the body.

OPTIONS | This method is used to retrieve a list of methods the web server accepts via the ‘Allow” HTTP response
header.

PUT This method is used to replace an existing resource or create a new resource on a web server.

DELETE This method is used to delete a resource on a web server.

TRACE The TRACE method is used for testing purposes and reflects the entire message received by the web
server back to the client. This allows the client to see exactly what the web server received.

CONNECT | The CONNECT method is hardly ever used and is for use with a proxy that can dynamically switch to being
a tunnel.

PATCH This method is like the PUT method. It differs because it allows for partial resource modification as to

where the PUT method only allows for complete resource replacement.

HTTP RESPONSES

o Let us know whether the request was successful

HTTP Status Codes

Level 200 Level 400 Level 500

200: OK 400: Bad Request 500: Internal Server Error
201: Created 401: Unauthorized 501: Not Implemented

202: Accepted 403: Forbidden 502: Bad Gateway

203: Non-Authoritative 404: Not Found 503: Service Unavailable
Information 409: Conflict 504: Gateway Timeout
204: No content 599: Network Timeout

RESTFUL SERVICES

Stateless: the client and server do not need to
know about each other

Separation of client and server: as long as the
format of the messages is known, they can
remain modular and separate

resource identification through URI:
Resources are accessed via paths

Client Tier Business Logic Tier Database Tier
HTML/CSS3
JavaScript TTEWRN. NodeJS Request Data
MySQL
Chrome
Browser | [Feack/S ExpressJS
HTML Page MySQL Data
" <
Desktop Application Server Database Server

® JAVASCRIPT

WHAT IS JAVASCRIPT

000
_ L

Interpreted at runtime:
the code 1s executed as
1t 1s ran, so no compiled
files like .jar or .exe

string name;
name = "John";

name = 34,

Dynamically typed: eie e
types of the objects are |[EEIEEES
interpreted during run [HSs “John®
time ’

Presenter Notes
Presentation Notes
No intermediate files compiled like jar or exe to detect semantics or syntax errors, instead code instructions are run and executed at the same time

Static Typing: Variables have types, Values have types, and variable types cannot change
Dynamic Typing: Variables don’t have types, Values have types and variables change type dynamically during run time

'S
SYNTAX: DECLARATION AND SCOPE

Variable Declaration: const vs var vs let

- Scopes:
- Global Scope- variable accessible
everywhere

- Function Scope- variable
accessible in function only

- Block Scope- variable accessible
1n blocks of: while loops, for loops,
switch statements, if statements

- Hoisting: All declarations are moved to the
top of their scope

Presenter Notes
Presentation Notes
Source:
https://www.freecodecamp.org/news/var-let-and-const-whats-the-difference
https://www.w3schools.com/js/js_let.asp
Scopes: Determines where specific variables are available
Var: globally scoped, ie: declared inside a function or a block, will still be available outside of that function or block, can be re-declared
Let: variables declared with let cannot be re-declared, variables defined with let must be declared before use, let has block scope, can be re-assigned
Const: cannot be Redeclared, cannot be Reassigned, have Block Scope

SYNTAX: TYPES

Number:
String
Boolean
Undefined

FUNCTIONS

Multiple ways to create

. function myFunction(a, b) {
functions el

return a * b;

}

Function declarations const x = function (a, b) {return a * b};
are also moved to the
" const x = function (a, b) {return a * b};

top of their scope e ey

because of hoisting,

except for those that P B e R W 1t o m i
. . const myFunction = new Function("a", "b", "return

are defined as variable JEEERE

expressions

let x = myFunction(4, 3);

Objects can be
created in a variety
of different ways

Z " D oe 1 ;

n t:]]__ = n ;

Objects are
mUtable

or:"blue®

Presenter Notes
Presentation Notes
Source: https://www.w3schools.com/js/js_objects.asp

FOR LOOP

<!DOCTYPE html>

<html>

<body>

<h2»JavaScript For Loop</h2>

<p id="demo"></p>

<script>
const cars = ["BMW", "Volvo", "Saab", "Ford", "Fiat", "Audi"];

let text = "";

for (let i = 9; i < cars.length; i++) {
text += cars[1] + "
";

h

document.getElementById(“demo”).innerHTML = text;

i

</script>

</body>

</html>

Presenter Notes
Presentation Notes
https://www.w3schools.com/js/tryit.asp?filename=tryjs_loop_for_om1

WHILE LOOP

<IDOCTYPE html>
<html>
<body>

<h2>JavaScript While Loop</h2>

<p id="demo™></p>

<script>
let text = "";
let 1 = 093
while (i < 18) {
text += "
The number is " + 1i;
1++;
¥
document.getElementById(“demo™).innerHTML = text;

F o

</script>

</body>

</html>

Presenter Notes
Presentation Notes
https://www.w3schools.com/js/tryit.asp?filename=tryjs_dowhile

IF ELSE IF ELSE

<IDOCTYPE html>
<html >
<body>

<h2>JavaScript it .. else</h2>
<p>A time-based greeting:</p>
<p id="demo"></p>

<script:>
const time = new Date().getHours();
let greeting;
if (time < 18) {
greeting = "Good morning™;
else if (time < 20) {
greeting = "Good day™;
else {
greeting "Good evening”;

document.getElementByTId(“demo™).innerHTML = greeting;
</script>

</body>
</ html>

Presenter Notes
Presentation Notes
https://www.w3schools.com/js/tryit.asp?filename=tryjs_loop_for_om1

® NODE AND EXPRESS.JS

WHAT IS NODE AND EXPRESS

Node: for server-side programming, and primarily deployed for
non-blocking, event-driven servers, such as traditional web sites
and back-end API services

Express: Express.js, or simply Express, 1s a back end web
application framework for building RESTful APIs with Node.js

@ Client €) HTTP server ©) Express adds
recuests hands request features to
something to Express the request
and response
CLIENT . NODE'S - -
browser, HTTP EXPRESS MIDDLEWARE
mobile app, | SERVER APP STACK
etc.
© HTTP server [

sends response

ﬂ Your functions respond
to the request

Presenter Notes
Presentation Notes
Installation: https://www.tutorialspoint.com/expressjs/expressjs_environment.htm

SETTING UP A SERVER IN INDEX.JS

Import express

Assign it to app

Use app for HTTP methods with given route and the callback function
to execute

4. Tell the app to listen on a specific port

oN =

var express = require('express');
var app = ex

app.get('/', function(req, res){
(IHEILG Wﬂrld['};

});

dpp.

Presenter Notes
Presentation Notes
- Import Express: we have access to it through express variable
- We use it to create a express application and assign it to var
- app.get(route, callback) : tells what to do when a get request at the given route is called
The request object(req) represents the HTTP request and has properties for the request query string, parameters, body, HTTP headers, etc.
Similarly, the response object represents the HTTP response that the Express app sends when it receives an HTTP request.
res.send() takes an object as input and it sends this to the requesting client
app.listen(port, [host], [backlog], [callback]]) binds and listens for connections on the specified host and port. Port is the only required parameter here.

'S
ROUTING

app.method(path, handler)
Path is the route at which the request will run
Handler is a callback function

app.all routes all methods to the same request

00

var express = require('express');
var app = express();

app.get('/hello’', function(req, res){
res.send("Hello World!");

.post('/hello', function(req, res){
res.send("You just called the post method at '/hello'!\n");

.all('/test', function(req, res){
.send("HTTP method doesn't have any effect on this route!");

)5

Presenter Notes
Presentation Notes
When we send a request, it’s being sent to our computer, which is local host, and the port that’s listening for requests in port 3000

n SEPARATING ROUTING FILES

app.use function call
on route '/things'

router '/', function(req, S
('GET route on things.

attaches the things

router with this route [R

router.post('/', function(req, res){
res.send('POST route on things.');

Hs
The '/' route In
things.js 1s actually a
subroute of '/things'

module.exports = router;

var things = require('./things.js');

o.use('/things', things);

)5

Presenter Notes
Presentation Notes
https://www.tutorialspoint.com/expressjs/expressjs_routing.htm

HTTP METHODS

The HTTP method is supplied in the request and specifies the
operation that the client has requested.

Method & Description

GET

The GET method requests a representation of the specified resource. Requests using GET
should only retrieve data and should have no other effect.

POST

The POST method requests that the server accept the data enclosed in the request as a
new object/entity of the resource identified by the URI.

PUT

The PUT method requests that the server accept the data enclosed in the request as a
modification to existing object identified by the URI. If it does not exist then the PUT method
should create one.

DELETE

The DELETE method requests that the server delete the specified resource.

DYNAMIC ROUTING

Using dynamic routes allows us to pass parameters and
process based on them

ess');

.get('/things/:name/:1d', function(req, res) {
.send('id: ' + reg.params.id + ' and name: ' + req.params.name);

.listen(H

<% localhost:3000/thinc x
5 C (O [0 localhost:3000/things/tutorialspoint/1: * O 9 @[

id: 123 and name: tutorialspoint

MIDDLEWARE

Middleware functions have access to the request object (req), the
response object (res), and the next middleware function in the
application’s request-response cycle

used to modify req and res objects for tasks like parsing request bodies,
adding response headers, etc.

e
var express equire('express');

var app s();

app.use('/things', function(req, res, t {
e.log("A request for things 1 ived at " + Date.now());

});

.get('/things', function(req, res){
res.send('Things');

i

DEMO TIME!

	backend development with restful apis & express.js
	Rest apis and requests
	What is backend Programming
	ARCHITECTURE
	Http requests
	HTTP Methods
	Http responses
	Restful Services
	Javascript
	What is javascript
	Syntax: Declaration and Scope
	Syntax: Types
	Functions
	Objects
	For loop
	While loop
	If else if else
	Node and express.js
	What is node and express
	Setting up a server in Index.js
	Routing
	Separating Routing Files
	http methods
	Dynamic Routing
	Middleware
	DEMO TIME!

