
Docker Workshop
A collaboration between GDSC and CSSC.

$whoami

> Ritvik Bhardwaj

> CSSC Tech Director

> Daniel Laufer

> GDSC Workshop lead

Today’s Agenda
● What is a VM?

● What is Docker?

● Hands-on activity with Docker

● Why do we need Docker?

● What is Docker compose?

● Hands-on activity with Docker-compose

What is Docker
● Software that allows you deploy your

applications in containers

● Allows you to essentially bundle up your

codebase into a package (called a

container) that can be deployed and ran

anywhere with ease.

● If it runs on one machine, it’ll run on the

rest!

Docker terminology
● Dockerfile - the file used to tell docker how to build your image

● Image - The blueprint used to create a container, you can share this with people and

build on top of it!

● Container - The running instance of your image, usually what’s deployed

● Scaling up/down - the process in which to add more RAM and storage to a container,

allows for dynamic usage

● YAML - yet another markup language, the main language used for docker compose

● Docker Daemon - the service responsible for running the containers, (comes paired with

docker desktop and needs to be running to be able to use Docker in the first place)

More on Containers
● A standard unit of software that packages up code and all its

dependencies so the application runs quickly and reliably from

one computing environment to another.

● Each container is created from an “image”

○ Think of an image as a template/blueprint for all the

contains that are created from it

■ Similar to how objects are created from

classes in Java, Python,etc

● Docker containers are similar to Virtual Machines in many

ways

Docker Container vs Virtual Machine
Container

Virtual Machine

Physical Server

Operating System

C
ontainer E

ngine Container

Application

Libraries

Physical Server

Operating System

Hypervisor

VM

Application

Libraries

VM

OS

Application

Libraries

OS

Container

Application

Libraries

*Slide taken from krish Chowdhary ’s WhiteVan Docker workshop

Docker Container vs Virtual Machine
Container

Virtual Machine

Physical Server

Operating System

C
ontainer E

ngine Container

Application

Libraries

Physical Server

Operating System

Hypervisor

VM

Application

Libraries

VM

OS

Application

Libraries

OS

Container

Application

Libraries

*Slide taken from krish Chowdhary ’s WhiteVan Docker workshop

So why is Docker useful?
● Say we want to manually deploy our React app on a server.

● These are the steps we’d have to take to deploy it:
1. Transfer all the files over the server

2. cd into the project directory and run npm install

Oh no! It turns out our server doesn’t have node installed. So let’s install it

3. Run npm install again

Oh no! It turns out we installed the wrong version of node and we are

unable to install our required dependencies and/or run the app

4. Run npm install again

It finally works!

So why is Docker useful?
● In this case it was difficult to deploy our app to our server

because of missing/outdated dependencies required to run our

app

● We entered “Dependency hell” 💀😔
● It’s very difficult to ensure our software runs on all types of

computers, operating systems, etc

● Think of having to deploy this app on many different servers,

that each can present their own unique problems!

● What if we want to scale our program up? Or if we want to

reduce it down?

Docker provides a solution to this!

How can we use Docker to avoid these issues?
● Idea:

● Ensure that the docker desktop is running

● Create a Docker image that describes how to run our react app in a container

● Push this image to docker hub (a website where you can upload the docker images

you make. Similar to GitHub)

● Pull this image from docker hub (ex. docker pull mywebsiteimage) onto your

server

Quick example:

● docker pull hello-world

○ Found here: https://hub.docker.com/_/hello-world

● docker run hello-world

How can we use Docker to avoid these issues?
● Use the docker run <yourimagenamehere> command to create a container from the

image and start it up on your server.

● We don’t have to worry about what’s installed on the actual server (all you need is docker

installed).

● The docker container is running your website in it’s own isolated environment!

Dockerfiles in depth Specify a “base image”. Need some sort
of starting point to build our container off
of. This instead could be “ubuntu”, or
“postgres”, etc.

The directory that you want to create/use
inside the container

From our computer copy over the file
package.json into the /app directory
inside the docker container (when it’s
created)

The command that’ll be run when the
container is created

From our computer copy over all the other
files in directory ‘.’ on our computer into
the /app directory inside the container

The command that’ll be run every time we
start up the container (note: creating a
container is different from starting up a
container)

Docker Installation

Install Docker here: https://www.docker.com/products/docker-desktop

Ensure you run Docker Desktop after installing!

Docker Hub

Docker Hub

Let’s get some hands-on Docker experience!
Code we will be using is found at github.com/UTM-GDSC/docker-workshop

Some useful commands
● docker build -t docker-workshop-mar-11 .

○ The ‘.’ indicates to Docker that our Dockerfile exists in the directory ‘.’ on our computer

○ Essentially builds our image and gives it a name of ‘docker-workshop-mar-11’

● docker run -p 3000:3000 docker-workshop-mar-11

○ Take anything arriving at port 3000 on your computer and direct it into port 3000 inside

the container

○ Docker run builds the image that we created in the previous step and then starts the

container!

● docker image rm docker-workshop-mar-11 --force

●

Docker Compose
Creating Multi-container Docker

applications

What is Docker compose?
● A tool that allows you to create and run multi-container docker applications

● You can define container restart policies for containers (what to do when a container,

stops, or exits with an error code, etc)

● You can ensure that containers are started up in a predefined order

● Allows you to define how containers can communicate with each other

○ Allows you to create communication channels between your containers

● And much, much more!

What is Docker compose?

Writing Docker compose yaml files
● You write your docker compose configuration in a file called docker-compose.yaml

○ You can use other file names but this is the default one

■ Example: daniel-compose.yaml is completely valid

● You will need to tell Docker about your custom naming scheme though!

○ Let’s see an example of a docker-compose file!

Running Docker compose
● First cd into the directory that contains that your docker-compose.yaml file

● You can then start up your multi-container docker application by running the command:

○ docker compose up

● Or if you wrote your code in a file named something other than docker-compose.yaml

○ docker compose -f <somefilename>.yml up

● Then to stop (aka shut down) your containers, run:

○ docker compose down

● Or docker-compose -f <somefilename>.yml down for non-default docker-compose file

names

Let’s get some hands-on Docker Compose experience!

Code we will be using is found at github.com/UTM-GDSC/docker-workshop

Thank you for Attending!

